Fourth Annual Conference on Carbon Capture & Sequestration

Developing Potential Paths Forward Based on the Knowledge, Science and Experience to Date

Combined Power Generation and Carbon Sequestration Using Direct FuelCell

Hossein Ghezel-Ayagh, Robert Sanderson, Dilip Patel

and Mohammad Farooque

FuelCell Energy, Inc.

Danbury, CT

FuelCell Energy

May 2-5, 2005, Hilton Alexandria Mark Center, Alexandria Virginia

FuelCell Energy Profile

- Delivering commercial products now with advanced Direct FuelCell® technology
- Established strong commercial relationships with major companies in the U.S., Germany, Japan and Korea
- #1 high temperature stationary fuel cell manufacturer and developer including carbonate and solid oxide applications
- A leading fuel cell technology developer for over 30 years – over \$450 million invested
- Headquarters in Danbury, CTManufacturing in Torrington, CT
- Strong balance sheet with more than \$230 million

FuelCell Energy Core Products: 250kW-10MW

DFC® 1500

DFC® 3000

Product Characteristics

- High temperature, high efficiency, carbonate fuel cell power plants for base load commercial and industrial applications
- > High value waste heat by-product for cogeneration
- ➤ Internally generated hydrogen from readily available fuels such as natural gas –operating at customer sites today
- Certifications for product safety, interconnection, performance and installation
- > Meeting current customer expectations

Multi-MW Grid Support

CO₂ Transfer Mechanism in Direct FuelCell (DFC)

Carbon Dioxide is transferred from cathode to anode via carbonate ions.

DFC-Based CO₂ Sequestration System Concept

DFC-Based CO₂ Separation System

Objectives:

- Cost-effective carbon dioxide separation systems utilizing Direct FuelCell technology
- Separation of at least 90% of carbon dioxide from the greenhouse gases (GHG) generated by coal fired power plants
- Less than 10% increase in the cost of energy services for long-term deployment

Ongoing R&D Activities

- Develop System Design Configurations
- Perform Process Simulation including Mass and Energy Balances
- Conduct Fuel Cell Tests using Simulated Greenhouse Gas
- Identify Equipment Requirements and Specifications
- **Perform Economic Analysis**

Plant Design Basis

- System designed for carbon dioxide removal from 200MW (nominal) coal fueled power plant exhaust
- Types of coal fired plants under study:
 - Pulverized Coal (PC) Steam Cycle Plant
 - Integrated (coal) Gasification Combined Cycle (IGCC)
 Power Plant
 - Atmospheric Circulating Fluidized Bed (ACFB) Boiler Steam Cycle Plant

Coal Fueled Power Plant Exhaust Streams (From Database Compiled)

		Pulverized Coal Boiler Steam Cycle Plant [1]	Atmospheric Circulating Fluidized Bed Boiler Steam Cycle Plant [2]	Integrated (coal) Gasification Combined Cycle Power Plant [2]		
		•		Existing Plant	Commercially Offered Future Plant	
	Gas Composition					
	(mole %)					
	CO_2	12.06	14.40	7.49	7.85	
	$\mathbf{O_2}$	4.47	3.32	11.95	11.76	
	$N_2 + Ar$	70.32	74.81	65.73	72.55	
	$\mathbf{H_{2}O}$	13.13	7.45	14.84	7.83	
	Temperature (deg F)	129	291	280	280	
	Pressure (psia)	14.7	14.7	14.7	14.7	
	Flow Rate (lbmole/h)*	69,269	63,032	100,563	115,573	

^{*} Scaled to 200 MW net plant size

^{[2] &}quot;Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers: Phase I – A Preliminary Systems Evaluation," Final Report (Volume I), May 2003, Prepared for: National Energy Technology Laboratory, By: Alstom Power, Inc., Windsor, CT

^[1] E. Parsons (NETL) and W. Shelton (EG&G), "Advanced Fossil Power Systems Comparison Study," Final Report, Dec 2002, Prepared for: National Energy Technology Laboratory (NETL)

DFC System Process Flow Sheet (Baseline Configuration)

CO₂ Separation by DFC-Based System

DFC-based system is very effective in separating CO₂ from greenhouse gases

	Gas Compositions (mole%)				
	PC Plant	Plant Exhaust	Stream		
	Flue Gas	Using	to		
	(GHG)	DFC System	Sequestration		
CO2	12.1	1.0	88.8		
H2O	13.1	11.4	9.1		
N2+Ar	70.3	82.6	1.0		
O2	4.5	5.0	1.2		

DFC System Performance Summary

DFC system has shown excellent performance in separation of carbon dioxide in the study of various types of coal fueled power plants

Net Power		CO2		
PLANT TYPE	MW		to Environment	
			lbs/MWhr	
	w/o DFC	with DFC	w/o DFC	with DFC
Pulverized Coal (PC) Steam Plant	200	341	1838	108
ACFB Steam Plant	200	353	1997	113
IGCC Plant	200	327	1657	101

DFC provides additional power

90% CO₂
 separation from the greenhouse gas

Anode Exhaust Post-Treatment Options

- Design of water condensation
- Utilization of hydrogen at the site:
 - Recycle as power plant fuel
 - Oxidation for heat recovery
- Recovery of hydrogen as byproduct:
 - Pressure swing adsorption (PSA)
 - ▶ Electrochemical separations (hydrogen pump)

Fuel Cell Tests

- Support system design task
- Perform tests of a lab-scale fuel cell
- Conduct tests with simulated GHG compositions as fuel cell cathode gas
 - **▶** Characterize fuel cell performance
- Optimize fuel cell performance for CO₂ transfer to anode
- Perform detailed data analysis
 - Utilize to improve the computer model by revising the fuel cell performance characteristics

Single Cell Schematic

Lab-Scale Fuel Cell Components

Fuel Cell Test Results

Fuel Cell Performance on Simulated PC Boiler Exhaust Gas

Summary

- ➤ The Direct FuelCell technology offers a unique and attractive alternative for CO₂ sequestration
- ➤ The R&D efforts are focused on applications with greater needs for GHG mitigation (coal fired plants)
- DFC based sequestration system cost is expected to be low due to the on-going commercialization of the technology and high volume manufacturing for power plant applications
- Results of the fuel cell tests with simulated PC plant flue gas have verified the potential application of the Direct FuelCell technology for carbon dioxide separation

Acknowledgement

- This research and development program is performed as a FCE cost-shared project supported by the US Department of Energy through the National Energy Technology Laboratory (NETL) under the Award No. DE-FC26-04NT42206.
- The DOE Contracting Officer's Representative is Mr. David A. Lang of NETL.

